Resonance decay effects on anisotropy parameters

X. Dong^{ab}, S. Esumi^c, P. Sorensen^b, N. Xu^b, Z. Xu^d

We present the elliptic flow v_2 of pions produced from resonance decays. The transverse momentum p_T spectra of the parent particles are taken from thermal model fits and their v_2 are fit under the assumption that they follow a number-of-constituent-quark (NCQ) scaling law expected from quark-coalescence models. The v_2 of pions from resonance particle decays is found to be similar to the measured pion v_2 . We also propose the measurement of electron v_2 as a means to extract open-charm v_2 and investigate whether a thermalized system of quasi-free quarks and gluons (a quark-gluon plasma) is created in collisions of Au nuclei at RHIC.

Introduction.—One of the surprising observations made at RHIC is the measurement of a number-of-constituent-quark (NCQ) dependence for both elliptic flow v_2 and the nuclear modification factor R_{CP} at intermediate p_T (1.5 < $p_T < 5 \text{ GeV/c}$ [1]. Models of hadron formation by constituent-quark coalescence provide a viable explanation for these observations whereas expectations based on conventional fragmentation approaches are inconsistent with the data [2–4]. In coalescence models an NCQ-scaling of v_2 arises as a consequence of hadrons coalescing out of a thermal distribution of partons and reveals the flow developed during a partonic epoch at RHIC. Pion v_2 , however, appears to violate NCQ-scaling. In this paper, we study the effect of resonance decays on pion v_2 . We show that when decays are taken into account, the measured pion v_2 may become consistent with the NCQ-scaling demonstrated by the kaon (K^+, K^-, K_S^0) , proton, Λ , and Ξv_2 distributions [1,5].

The particle azimuthal distribution with respect to the reaction plane at rapidity y can be described by a Fourier expansion:

$$\frac{dN}{d\Delta\phi} \propto 1 + \Sigma_n 2v_n \cos(n\Delta\phi),\tag{1}$$

where $\Delta \phi$ is the difference in azimuth angle between the particle and the reaction plane. The first and second Fourier coefficients, v_1 and v_2 , historically are called directed and elliptic flow, respectively. All coefficients can be calculated from the relation: $v_n = \langle \cos(n\Delta\phi) \rangle$.

As the volume of the system created in an offaxis nucleus-nucleus collision expands, its spatial anisotropy quenches. The momentum-space anisotropies represented by the Fourier coefficients v_n preserve information about the early collision dynamics when the spatial anisotropy was largest [2,6–8]. Since the initial overlap region is elliptical in shape, the second harmonic coefficient v_2 is the largest and most studied.

NCQ-scaling of v_2 .—Fig. 1 shows the $\pi^- + \pi^-$, K_S^0 , $p + \overline{p}$, and $\Lambda + \overline{\Lambda}$ v_2 from minimum-bias $^{197}\mathrm{Au}$ + $^{197}\mathrm{Au}$ collisions at $\sqrt{s_{NN}} = 200$ GeV [1,5]. In the lower p_T region ($p_T < 1.0$ GeV/c), the values of v_2 are lower for higher mass hadrons. Hydrodynamic calculations [9] predict the observed mass dependence of v_2 -perhaps implying that a thermalized system has been created in collisions at RHIC energy. At higher p_T ($p_T \geq 2$ GeV/c), the v_2 measurements saturate at values below the hydrodynamic model predictions. The saturated value of v_2 and the p_T scale where

^aDepartment of Modern Physics, University of Science and Technology of China, Hefei, 230026, China

^bNuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^cInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

^dPhysics Division, Brookhaven National Laboratory, Upton, NY 11973, USA

the saturation sets in depends on the particletype: the baryon v_2 saturates at higher p_T and at larger values than that of mesons.

According to coalescence models [4], after scaling both v_2 and p_T with the number of the constitueent quarks (NCQ) in the corresponding hadron, all particles at intermediate p_T should fall onto one universal curve. The NCQscaled v_2 measurements in Fig. 1-(b) show that $v_2/n_q(p_T/n_q)$ for $p_T/n_q > 0.7$ GeV/c is similar for all particles except pions. This observation, coupled with the NCQ-dependence observed at intermediate p_T in the nuclear modification factor R_{CP} is evidence of hadron formation by coalescence or recombination. this case, $v_2/n_q(p_T/n_q)$ represents a constituent quark momentum-space anisotropy v_2^q that arises as a consequence of collectivity in a partonic stage. Based on coalescence models, NCQ-scaling suggests the creation of a quark-gluon plasma (QGP) with v_2^q characterizing the properties of the QGP. For this reason, understanding the source of the discrepancy in the NCQ-scaled pion v_2 is imperative.

With this goal in mind, we study the effect of secondary pions (from particle decays) on the measured pion v_2 . We assume that NCQ scaling is valid for all hadrons other than pions and use the published v_2 measurements [1,5] to parameterize $v_2/n_q(p_T/n_q)$. The p_T distributions are assumed to follow an exponential form with slope parameters taken from measurements when available. We use chemical fits to fix the relative hadron abundances [10,11]. Since the pion mass is much smaller than the sum of its constituent quarks masses, direct pions are not necessarily assumed to follow the scaling predicted from coalescence models. As such, we do not consider direct pions, and instead choose to study the v_2 of the secondary pions. Given the model uncertainties, extraction of the direct pion v_2 is difficult and remains an open question. Finally we will discuss how to extract open-charm v_2 based on the decayed electrons.

Simulation results.—The v_2 values of the simulated resonances are parameterized by fitting K_S^0

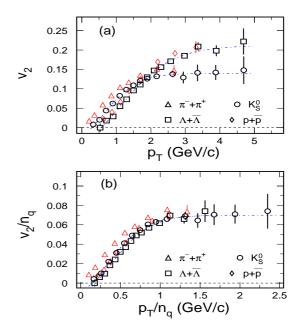


Figure 1. (a) Measurements of the p_T dependence of the event anisotropy parameters for π , K_S^0 , p, Λ . Dot-dashed lines are the results of fits; (b) Number-of-constituent-quark (NCQ) scaled v_2 . All particles except the pions follow the NCQ scaling.

and Λv_2 [1] with the equation:

$$f_{v_2}(n) = \frac{an}{1 + exp(-(p_T n - b)/c)} - dn, \quad (2)$$

where a,b,c and d are the fit parameters and n is the constituent-quark number. The fit results are shown as dot-dashed lines in Fig. 1, where the fitting parameters are $a=0.1,\ b=0.35,$ c=0.2 and d=0.03. The NCQ-scaling of v_2 works well for for Kaons, protons and Lambdas within $0.5 \le p_T/n_q \le 1.5$ GeV/c whereas pion v_2 deviates from NCQ scaling for all p_T . The parameters from chemical fits are listed in Table 1.

In high-energy collisions, a large fraction of hadrons are produced through resonance decays. This is particularly true for pions in high-energy heavy-ion collisions. At mid-rapidity, in collisions

Table 1
Parameters for the input resonances: slope parameters T units are GeV. The fraction of the hadrons are fixed from the measured abundances.

	T1	T2	Т3	Fraction (%)
$\overline{\rho}$	0.5	0.4	0.3	60 ± 10
ω	0.5	0.4	0.3	30 ± 10
K_S^0	0.3	0.3	0.3	6 ± 5
$K^{*}(892)$	0.5	0.4	0.3	2 ± 1
Δ	0.55	0.55	0.55	2 ± 2

at RHIC, as many as 80% of pions are from resonance decays [12]. The dominant decays are $\rho \to \pi\pi$, $\omega \to 3\pi$, $K^*(892) \to K\pi$, $K_S^0 \to \pi\pi$ and $\Delta \to N\pi$. With such a potentially large fraction of pions arising from decays, accounting for their effect on the observed pion v_2 is very important.

The p_T distributions of pions from resonance decays are shown in Fig. 2. Most pions at $p_T < 1~{\rm GeV/c}$ are generated from resonances with $1 \le p_T \le 2~{\rm GeV/c}$ where v_2 of the parent is near its maximum value. As a result the decayed pions take on a relatively large v_2 value. The decays from the ρ - and ω -mesons dominate the secondary pion p_T spectrum. In this plot, a slope parameter of $T=0.4~{\rm GeV}$ is used for the ρ distributions. In peripheral collisions, the STAR measured slope parameter is $319\pm4({\rm stat.})\pm32~({\rm syst.})~{\rm MeV}$ [13]. The simulated results are in a good agreement with the PHENIX π^0 data from minimum bias $^{197}{\rm Au} + ^{197}{\rm Au}$ collisions [14].

In Fig. 3, the v_2 values for the simulated decay pions are shown as dashed-lines. The resonances included in this study are the ρ , ω , K^* , K_S^0 and Δ . The decay $\rho \to \pi\pi$ with a 100% branching ratio dominates the production of secondary-pions. The simulated resonance particles are restricted to mid-rapidity |y| < 0.5. Increasing the rapidity window does not change the results. The pion v_2 in the region $p_T \leq 1.5$ GeV/c is sensitive to the shape of the ρ p_T spectrum. Dashed-, dotted-, and dot-dashed-lines correspond to the v_2 results from the different slope parameters listed in Table 1. For the smaller slope parameter T=300 MeV, the decayed pion v_2 is below the data, leaving room for other contributions [15].

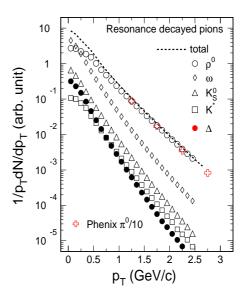


Figure 2. Resonance decayed pion distributions. The summed spectrum is shown as dashed-line. In this simulation, a slope parameter of T = 0.4 GeV is used for ρ, ω and K^* . For K_S^0 and Δ the respective slope parameters T = 0.3 GeV and 0.55 GeV are used. The relative fraction of the hadrons are listed in Table 1. For comparison, PHENIX π^0 results are shown as open-crosses.

D-meson v_2 .—NCQ scaling suggests that hadrons at intermediate p_T are formed from a thermal partonic phase created in heavy-ion collisions at RHIC. In this system, the high initial matter density gradient and copious interactions among partons leads to a collective motion of partons. The large v_2 values measured for multi-strange hadrons also indicate that partonic collectivity develops in collisions at RHIC [16]. Whether light flavored partons become thermalized, however, remains to be demonstrated. The development of collectivity for heavier partons should require much more re-scattering. As such, the measurement of heavy flavor (open-charm) v_2 can probe the degree to which the lighter u-,d-, and s-quarks thermalize.

Since a large fraction of heavy-flavor hadrons

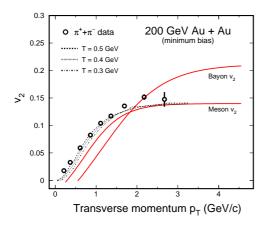


Figure 3. The measured pion v_2 (symbols) is compared to the simulated v_2 for pions from resonance decays (dashed lines). The assumed v_2 of mesons and baryons are represented by the solid and dot-dashed lines, respectively.

decay through leptonic modes, electron v_2 measurements may offer a convenient way to study open-charm v_2 . In Fig. 4-(a), the v_2 for electrons from D-meson decays is shown. Dot-dashed lines represent the assumed v_2 of the parent meson. We simulate the D-meson p_T distribution using the PYTHIA event generator [17]. The shape of the calculated spectrum is well represented by a power-law function. Approximately 50 M Dmeson events are used in this simulation. For electron $p_T > 1.5 \text{ GeV/c}$, the v_2 of electrons from D-meson decays becomes similar to the parent Dmeson v_2 . The degree of heavy flavor thermal equilibrium can be assessed by measuring electron v_2 within $1 \leq p_T(e) \leq 3 \text{ GeV/c}$ a region which corresponds to $\sim 2 \le p_T(D) \le \sim 5 \text{ GeV/c}$.

Neutral pion decays are the dominant source of "background" electrons. While the two-photon decay process,

$$\pi^0 \xrightarrow{\sim 100\%} \gamma + \gamma \xrightarrow{\text{few}\%} e^+ + e^- + e^+ + e^-,$$

can be identified by its decay topology [18], the pion Dalitz decay can only be subtracted statistically. In Fig. 4-(b) we show the v_2 of electrons

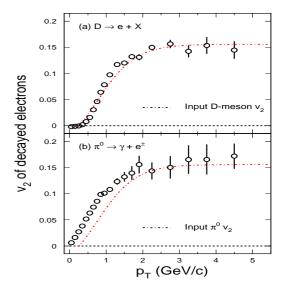


Figure 4. The v_2 of electrons from D-meson decays (a) and π^0 decays (b). The assumed input meson v_2 curves are shown as dot-dashed lines in both plots.

from simulated pion Dalitz decays. The pion distribution can be obtained from measurements at RHIC [14]. For these simulations a 100% conversion probability is assumed. In STAR, however, the probability is closer to 5%. The decayed electrons predominantly have $p_T \leq 0.5~{\rm GeV/c}$ [18].

Electrons from heavy flavor decays begin to dominate the electron spectrum above $p_T \sim 3~{\rm GeV/c}$. With knowledge of the pion yield, Dmeson yield, the pion v_2 , and the electron v_2 it will be possible to extract the D-meson v_2 . These measurements can be made by both the PHENIX and STAR collaborations at RHIC. Direct photon v_2 can also be measured with this method.

Summary.—We have studied the effect of resonance decays on the pion v_2 in Au+Au collisions at RHIC. When the v_2 values for resonances are assumed to follow NCQ scaling, the pions generated in their decays take on v_2 values similar to those measured at RHIC. The dominant source of secondary pions is ρ decays. We have shown that

when decays are accounted for, the measured pion v_2 values may become consistent with the NCQ scaling law that suggests the development of partonic collectivity in collisions at RHIC. Model uncertainties, however, make it difficult to extract the direct pion v_2 . In addition, we propose the measurement of electron v_2 as a means to study open-charm v_2 and hence the degree of thermalization reached at RHIC.

Acknowledgements: We appreciate fruitful discussions with P. Huovinen, C. Ko, H. G. Ritter, E. V. Shuryak, S. Voloshin. This work was supported in part by the NSFC under the Project No. 10275027 and the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

REFERENCES

- J. Adams *et al.* [STAR Collaboration], Phys. Rev. Lett. **92**, 052302 (2004).
- 2. S. A. Voloshin, Nucl. Phys. A **715**, 379 (2003).
- 3. R. J. Fries, B. Muller, C. Nonaka and S. A. Bass, Phys. Rev. C **68**, 044902 (2003).
- Z. w. Lin and C. M. Ko, Phys. Rev. Lett. 89, 202302 (2002); R. J. Fries, B. Muller, C. Nonaka and S. A. Bass, Phys. Rev. Lett. 90, 202303 (2003); D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).
- S. S. Adler *et al.* [PHENIX Collaboration], Phys. Rev. Lett. **91**, 182301 (2003).
- 6. H. Sorge, Phys. Lett. B **402**, 251 (1997).
- 7. J. Y. Ollitrault, Phys. Rev. D **46**, 229 (1992).
- 8. N. Xu and Z. b. Xu, Nucl. Phys. A **715**, 587 (2003).
- P. Huovinen, P. F. Kolb and U. W. Heinz, Nucl. Phys. A 698, 475 (2002); P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin, Phys. Lett. B 503, 58 (2001).
- P. Braun-Munzinger, K. Redlich and J. Stachel, arXiv:nucl-th/0304013 and references therein.
- N. Xu and M. Kaneta, Nucl. Phys. A 698, 306 (2002).
- 12. Z. b. Xu, J. Phys. G 30, S325 (2004).
- 13. J. Adams *et al.* [STAR Collaboration], arXiv:nucl-ex/0307023.
- 14. S. S. Adler et al. [PHENIX Collaboration],

- Phys. Rev. Lett. 91, 172301 (2003).
- 15. V. Greco and C. M. Ko, arXiv:nucl-th/0402020.
- 16. J. Adams *et al.* [STAR Collaboration], arXiv:nucl-ex/0307024.
- T. Sjöstrand, L. Lönnblad and S. Mrenna, arXiv:hep-ph/0108264 and references therein.
- I. J. Johnson [STAR Collaboration], Nucl. Phys. A 715, 691 (2003).